

Welcome to KeyVM’s documentation!

Contents:

	Quickstart
	Download

	Installation

	Usage

	Architecture
	General properties of KeyVM

	Access right model

	Main actions

	Assembler

	Data Structures
	Domain

	API

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

Tested with Python 3.8.2

Download

git clone https://github.com/void4/keyvm.git

Installation

pip install -r requirements.txt

Usage

python main.py

Architecture

General properties of KeyVM

	stack-based computational architecture - most operations take their inputs from a stack of previous results, and push their results onto it

	single-threaded - only one instruction is executed at a time

	deterministic - a copy of the program with the same input will always create the same results, down to the bit

	stateless, image-based - all data necessary to restore a process resides in the process image, which can be saved to and loaded from a file after execution ends

Access right model

What makes this architecture unique is that it introduces a new concept - (access) rights - represented by objects called keys.

Everything in this architecture is derived from two types of objects:

	Key: gives access to a Page. It is impossible to read from or write to a page you don’t have the key to. It works just like real, physical keys and locks.

	Page: there are two types: DataPages (a contiguous sequence of bytes, used to store code and data) and KeyPages (a list of keys), both of dynamic size.

Keys to an existing Page cannot be constructed out of nothing - they cannot be forged - only the creator of a page receives its key.

Because keys can be copied and shared by those who already have them, more than one domain can have access to the same page, and which domain has which keys can change over time.

Instead of sending data to another domain, you just send a copy of the key that allows it to access the page the data is contained in. Now, data is not the thing that matters, but the rights to it.

Instead of a process, where every part of the program is allowed to access every other part, here a domain can construct a new domain, put some code into it and run it, with the complete assurance that it can only access the pages it was explicitly given access to - nothing else.

Domains

A domain is the KeyVM equivalent to a typical process.

In contemporary programming languages a process has a fixed code and data memory attached to (only) it. Here, a process is just a list of keys called a Domain.

It’s just a KeyPage that contains Keys that point to other Pages that a process needs - the processes’ code, data and stack as well as some more information (more at Data Structures).

A Domain can send other domains their DomainKey - a special key that allows others to send it a message.

Domains pass control to each other by invoking the CALL instruction with the DomainKey of the other domain and (optionally) another - a ‘message’ Key - which is copied to the called domains’ KeyPage. The called Domain can then access everything (indirectly) referred to by key (a Page if it’s a PageKey, or more keys if it’s a KeyPageKey).
In this implementation, only one domain is running at a time (single-threaded architecture).

Meters

MeterKeys account for resources, specifically computation time and memory limits. Domains have to own a time meter key in order to run the code they refer to.
MeterKeys are organized in a tree hierarchy, each meter has a parent meter, up to the so called Prime Meters.

In order to allocate more pages, one needs a Memory MeterKey with sufficient resources.
When a domain runs, the entire meter chain up to the prime meter is decreased at every execution step. When a meter runs out of time, its the controller of its parent (RESEARCH) receives control.

	Key
	Right
	Example

	MeterKey
	Draw resources from the parent meter chain
	Separate into time and memory keys?

	PageKey
	Read and write access to a key or data page
	Can be attenuated to PageReadKey

	PageReadKey
	Read access to a key or data page
	Not yet implemented

	DomainKey
	Allows sending a message and thus transferring control to the referred domain
	Also called GateKey in KeyKOS.

	SystemKey
	When called, invokes the VM and returns the result
	network io, file system access etc. Protocol TBD

More info here:

	http://www.cap-lore.com/Agorics/Library/KeyKos/key370.html

	http://www.cap-lore.com/Agorics/Library/KeyKos/

Main actions

	create a new KeyPage or DataPage

	copy a Key (within the same or to another KeyPage)

	attenuate a Key (weaken its rights, e.g. PageKey -> PageReadKey)

	send a message and transfer control to another domain by calling the PageKey that refers to it

	create a new domain from a prepopulated KeyPage

Special instructions

	Instruction
	Usage

	CREATEPAGE
	Creates a new page which the current domain receives a key to

	CALL
	Transfers control to another Domain. Can include another key as message

	COPYKEY
	Copies an existing key to another slot in another KeyPage

Assembler

The assembler accepts instructions in a tree format

memwrite(memread(0,0),1,codelen())

is expanded to

PUSH 0
PUSH 0
MEMREAD
PUSH 1
CODELEN
MEMWRITE

It doesn’t yet check if the inputs/outputs match up.

Data Structures

Domain

A Domain is a KeyPage, with the following structure:

	Key name
	Key type
	refers to the

	D_SELF
	KeyPageKey
	keypage the key itself is contained in

	D_STATE
	DataKey
	a number indicating the current process state

	D_TIME
	MeterKey
	meter from which the domain draws computing time

	D_MEMORY
	MeterKey
	meter from which the domain draws memory

	D_IP
	DataKey
	current instruction pointer

	D_CODE
	PageKey
	code the domain uses

	D_POINTER
	DataKey
	

	D_STACK
	PageKey
	stack the domain uses for computation

	D_DATA
	PageKey
	data the domain uses

	D_RECV
	?
	optional, a key that points to data that has been sent to it

API

	
exception vm.VMException

	

 Python Module Index

 v

 		 	

 		
 v	

 	
 	
 vm	

Index

 V

V

 	
 	vm (module)

 	
 	VMException

 nav.xhtml

 Table of Contents

 		
 Welcome to KeyVM’s documentation!

 		
 Quickstart

 		
 Download

 		
 Installation

 		
 Usage

 		
 Architecture

 		
 General properties of KeyVM

 		
 Access right model

 		
 Domains

 		
 Meters

 		
 Main actions

 		
 Special instructions

 		
 Assembler

 		
 Data Structures

 		
 Domain

 		
 API

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

